当前,仿人机器人在与人类进行情感人机交互时,面临无法生成复杂且真实面部表情的难题。由于现有技术限制,机器人无法像人类一样通过细腻的面部表情表达情感,这在一定程度上影响了用户的参与度和交互体验。因此,提升机器人生成自然表情的能力对于增强情感人机交互的质量具有重要意义。学术界解决机器人情感表达问题的研究思路之一是利用预定义规则和硬件设计来生成机器人表情。生成的面部表情基于固定的规则和有限的表情类别,预定义的表情风格和种类有限,无法生成丰富且细腻的面部表情。此外,目前的预定义规则技术大多依赖于手动编码,缺乏灵活性,难以适应不同情境下的情感表达需求。例如,固定的表情编码无法捕捉到面部肌肉的微小运动,导致生成的表情不够自然,影响用户对机器人的情感理解和互动体验。我校刘小峰教授团队联合英国曼彻斯特大学、英国莱斯特大学、常州大学科研人员基于现有技术在表情生成过程中捕捉面部肌肉细节的缺陷,设计了一种基于面部动作单元(Action Units, AUs)的表情解耦生成方法,探索了该方法在生成自然且细腻面部表情方面的效果,并进一步开发了一个具备多自由度面部运动的情感机器人(图1),以实际验证该方法在情感人