我校港口海岸与近海工程学院21级博士研究生陈治澎在罗锋副教授的指导下,提出了一种基于卷积神经网络的深度学习模型架构,用于模拟盐沼植被斑块影响下的异质性流场与地貌过程,相比传统自由表面流模型运算速度提高了四个数量级以上,为盐沼生物地貌过程的高效模拟提供了技术支撑。生物和物理过程之间的双向相互作用,即生物地貌反馈,在盐沼景观的形成和演化中发挥着至关重要的作用。斑块化植被代表了盐沼中一种典型的尺度依赖反馈形式,是形成高效的潮汐排水网络主要诱因。尺度相关反馈的直观表现是异质性的流动与地貌发展,基于过程的数学模型是研究异质性流场与地貌演化的重要工具,但小空间尺度和长时间框架下的高额计算成本为研究工作带来了极大的困难。在这项研究中,提出了一种基于卷积神经网络的深度学习模型架构UNet-Flow(图1),用于建立替代模型来模拟盐沼斑块植被影响下的异质性流场。模型评估结果显示,与使用传统自由表面流模型Telemac-2D的单进程模拟相比,UNet-Flow的速度提高了四个数量级以上,总体误差较小(图2)。此外,提出了一种将泥沙地貌模型Sisyphe与神经网络模型相结合的方法用于模拟盐沼地貌演化异质性。